Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Biol Macromol ; 188: 391-403, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1347646

ABSTRACT

One of the main structural proteins of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the nucleocapsid protein (N). The basic function of this protein is to bind genomic RNA and to form a protective nucleocapsid in the mature virion. The intrinsic ability of the N protein to interact with nucleic acids makes its purification very challenging. Therefore, typically employed purification methods appear to be insufficient for removing nucleic acid contamination. In this study, we present a novel purification protocol that enables the N protein to be prepared without any bound nucleic acids. We also performed comparative structural analysis of the N protein contaminated with nucleic acids and free of contamination and showed significant differences in the structural and phase separation properties of the protein. These results indicate that nucleic-acid contamination may severely affect molecular properties of the purified N protein. In addition, the notable ability of the N protein to form condensates whose morphology and behaviour suggest more ordered forms resembling gel-like or solid structures is described.


Subject(s)
Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/isolation & purification , Liquid-Liquid Extraction/methods , SARS-CoV-2/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/isolation & purification , Intrinsically Disordered Proteins/metabolism , Nucleic Acids/chemistry , Nucleic Acids/metabolism , Protein Aggregates , Protein Structure, Quaternary , Protein Structure, Secondary
2.
Molecules ; 26(13)2021 Jun 22.
Article in English | MEDLINE | ID: covidwho-1288957

ABSTRACT

In the current work, a simple, economical, accurate, and precise HPLC method with UV detection was developed to quantify Favipiravir (FVIR) in spiked human plasma using acyclovir (ACVR) as an internal standard in the COVID-19 pandemic time. Both FVIR and ACVR were well separated and resolved on the C18 column using the mobile phase blend of methanol:acetonitrile:20 mM phosphate buffer (pH 3.1) in an isocratic mode flow rate of 1 mL/min with a proportion of 30:10:60 %, v/v/v. The detector wavelength was set at 242 nm. Maximum recovery of FVIR and ACVR from plasma was obtained with dichloromethane (DCM) as extracting solvent. The calibration curve was found to be linear in the range of 3.1-60.0 µg/mL with regression coefficient (r2) = 0.9976. However, with acceptable r2, the calibration data's heteroscedasticity was observed, which was further reduced using weighted linear regression with weighting factor 1/x. Finally, the method was validated concerning sensitivity, accuracy (Inter and Intraday's % RE and RSD were 0.28, 0.65 and 1.00, 0.12 respectively), precision, recovery (89.99%, 89.09%, and 90.81% for LQC, MQC, and HQC, respectively), stability (% RSD for 30-day were 3.04 and 1.71 for LQC and HQC, respectively at -20 °C), and carry-over US-FDA guidance for Bioanalytical Method Validation for researchers in the COVID-19 pandemic crisis. Furthermore, there was no significant difference for selectivity when evaluated at LLOQ concentration of 3 µg/mL of FVIR and relative to the blank.


Subject(s)
Amides/analysis , Amides/blood , Antiviral Agents/analysis , Antiviral Agents/blood , Biological Assay/methods , COVID-19 Drug Treatment , Chromatography, High Pressure Liquid/methods , Liquid-Liquid Extraction/methods , Pyrazines/analysis , Pyrazines/blood , Acyclovir/analysis , Acyclovir/blood , COVID-19/blood , Calibration , Drug Stability , Freezing , Humans , Reference Standards , Reproducibility of Results , Solvents/chemistry
3.
Nat Commun ; 12(1): 2114, 2021 04 09.
Article in English | MEDLINE | ID: covidwho-1174670

ABSTRACT

Lack of detailed knowledge of SARS-CoV-2 infection has been hampering the development of treatments for coronavirus disease 2019 (COVID-19). Here, we report that RNA triggers the liquid-liquid phase separation (LLPS) of the SARS-CoV-2 nucleocapsid protein, N. By analyzing all 29 proteins of SARS-CoV-2, we find that only N is predicted as an LLPS protein. We further confirm the LLPS of N during SARS-CoV-2 infection. Among the 100,849 genome variants of SARS-CoV-2 in the GISAID database, we identify that ~37% (36,941) of the genomes contain a specific trio-nucleotide polymorphism (GGG-to-AAC) in the coding sequence of N, which leads to the amino acid substitutions, R203K/G204R. Interestingly, NR203K/G204R exhibits a higher propensity to undergo LLPS and a greater effect on IFN inhibition. By screening the chemicals known to interfere with N-RNA binding in other viruses, we find that (-)-gallocatechin gallate (GCG), a polyphenol from green tea, disrupts the LLPS of N and inhibits SARS-CoV-2 replication. Thus, our study reveals that targeting N-RNA condensation with GCG could be a potential treatment for COVID-19.


Subject(s)
Amino Acid Substitution/drug effects , COVID-19/prevention & control , Catechin/analogs & derivatives , Nucleocapsid Proteins/genetics , SARS-CoV-2/drug effects , Virus Replication/drug effects , COVID-19/virology , Catechin/pharmacology , Genome, Viral/genetics , Humans , Liquid-Liquid Extraction , Nucleocapsid Proteins/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , Virus Replication/genetics
4.
Biochem Biophys Res Commun ; 541: 50-55, 2021 02 19.
Article in English | MEDLINE | ID: covidwho-1030847

ABSTRACT

SARS-CoV-2 is a highly contagious coronavirus causing the ongoing pandemic. Very recently its genomic RNA of ∼30 kb was decoded to be packaged with nucleocapsid (N) protein into phase separated condensates. Interestingly, viruses have no ability to generate ATP but host cells have very high ATP concentrations of 2-12 mM. A key question thus arises whether ATP modulates liquid-liquid phase separation (LLPS) of the N protein. Here we discovered that ATP not only biphasically modulates LLPS of the viral N protein as we previously found on human FUS and TDP-43, but also dissolves the droplets induced by oligonucleic acid. Residue-specific NMR characterization showed ATP specifically binds the RNA-binding domain (RBD) of the N protein with the average Kd of 3.3 ± 0.4 mM. The ATP-RBD complex structure was constructed by NMR-derived constraints, in which ATP occupies a pocket within the positive-charged surface utilized for binding nucleic acids. Our study suggests that ATP appears to be exploited by SARS-CoV-2 to promote its life cycle by facilitating the uncoating, localizing and packing of its genomic RNA. Therefore the interactions of ATP with the viral RNA and N protein might represent promising targets for design of drugs and vaccines to terminate the pandemic.


Subject(s)
Adenosine Triphosphate/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Liquid-Liquid Extraction , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Adenosine Triphosphate/chemistry , Binding Sites , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Binding Motifs/genetics , SARS-CoV-2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL